Quasiconformal Distortion of Hausdorff Measures

نویسنده

  • XAVIER TOLSA
چکیده

In this paper we prove that if φ : C → C is a K-quasiconformal map, 0 < t < 2, and E ⊂ C is a compact set contained in a ball B, then H(E) diam(B) ≤ C(K) ( H ′ (φ(E)) diam(φ(B))t′ ) t tK

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasiconformal Distortion of Riesz Capacities and Hausdorff Measures in the Plane

In this paper we prove the sharp distortion estimates for the quasiconformal mappings in the plane, both in terms of the Riesz capacities from non linear potential theory and in terms of the Hausdorff measures.

متن کامل

Astala’s Conjecture on Distortion of Hausdorff Measures under Quasiconformal Maps in the Plane

Let E ⊂ C be a compact set, g : C → C be a K-quasiconformal map, and let 0 < t < 2. Let H denote t-dimensional Hausdorff measure. Then H(E) = 0 =⇒ H ′ (gE) = 0 , t′ = 2Kt 2 + (K − 1)t . This is a refinement of a set of inequalities on the distortion of Hausdorff dimensions by quasiconformal maps proved by K. Astala [2] and answers in the positive a conjecture of K. Astala in op. cit.

متن کامل

Sharp Examples for Planar Quasiconformal Distortion of Hausdorff Measures and Removability

In the celebrated paper [Ast94], Astala showed optimal area distortion bounds and dimension distortion estimates for planar quasiconformal mappings. He asked (Question 4.4) whether a finer result held, namely absolute continuity of Hausdorff measures under push-forward by quasiconformal mappings. This was proved in one particular case relevant for removability questions, in joint work of Astala...

متن کامل

Non - Removable Sets for Quasiconformal and Locally Bilipschitz Mappings in R

We give an example of a totally disconnected set E ⊂ R which is not removable for quasiconformal homeomorphisms, i.e., there is a homeomorphism f of R to itself which is quasiconformal off E, but not quasiconformal on all of R. The set E may be taken with Hausdorff dimension 2. The construction also gives a non-removable set for locally biLipschitz homeomorphisms. 1. Statement of results If a h...

متن کامل

David Maps and Hausdorff Dimension

David maps are generalizations of classical planar quasiconformal maps for which the dilatation is allowed to tend to infinity in a controlled fashion. In this note we examine how these maps distort Hausdorff dimension. We show: – Given α and β in [0, 2] , there exists a David map φ: C → C and a compact set Λ such that dimH Λ = α and dimH φ(Λ) = β . – There exists a David map φ: C → C such that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009